Smooth exhaustion functions in convex domains
نویسندگان
چکیده
منابع مشابه
Convex Defining Functions for Convex Domains
We give three proofs of the fact that a smoothly bounded, convex domain in R n has defining functions whose Hessians are non-negative definite in a neighborhood of the boundary of the domain.
متن کاملQuasiconformal Harmonic Functions between Convex Domains
We generalize Martio’s paper [14]. Indeed the problem studied in this paper is under which conditions on a homeomorphism f between the unit circle S1 := {z : |z| = 1} and a fix convex Jordan curve γ the harmonic extension of f is a quasiconformal mapping. In addition, we give some results for some classes of harmonic diffeomorphisms. Further, we give some results concerning harmonic quasiconfor...
متن کاملSmooth Convex Bodies with Proportional Projection Functions
For a convex body K ⊂ Rn and i ∈ {1, . . . , n− 1}, the function assigning to any i-dimensional subspace L of Rn, the i-dimensional volume of the orthogonal projection of K to L, is called the i-th projection function of K. Let K, K0 ⊂ Rn be smooth convex bodies of class C2 +, and let K0 be centrally symmetric. Excluding two exceptional cases, we prove that K and K0 are homothetic if they have ...
متن کاملOptimization of Smooth and Strongly Convex Functions
A. Proof of Lemma 1 We need the following lemma that characterizes the property of the extra-gradient descent. Lemma 8 (Lemma 3.1 in (Nemirovski, 2005)). Let Z be a convex compact set in Euclidean space E with inner product 〈·, ·〉, let ‖ · ‖ be a norm on E and ‖ · ‖∗ be its dual norm, and let ω(z) : Z 7→ R be a α-strongly convex function with respect to ‖ · ‖. The Bregman distance associated wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1997
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-97-03571-5